250 mW Power Amplifier with T/R and Diversity Switches 2.4-2.5 GHz

Features

- Highly Integrated Power Amplifier With T/R and Diversity Switches
- Operates Over 2.7 V to 6 V Supply Voltage
- High Linear Output Power ($\mathrm{P}_{1 \mathrm{~dB}}$: +24 dBm)
- Individual Gate Control for Each Amplifier Stage
- Low Cost SSOP-28 Plastic Package

Description

M/A-COM's AM55-0003 is a GaAs power amplifier with integrated transmit/receive and an antenna diversity switch in a low cost SSOP 28 plastic package. The power amplifier delivers +24 dBm of linear power with high efficiency and can be operated with voltages as low as 2.7 volts. The power amplifier switch is fully monolithic. The T / R and diversity switches achieve good insertion loss and isolation without degrading the overall linearity. The switches can be controlled with CMOS logic levels.

The AM55-0003 is ideally suited for QPSK, BPSK or other linearly modulated systems in the 2.4 GHz ISM frequency band. It can also be used in GFSK systems where levels of +25 dBm are required. Typical applications include WLAN and wireless portable data collection. This power amplifier can be combined with a transceiver IC (MD58-0001 or MD58-0002) to form a complete RF front end.

M/A-COM's AM55-0003 is fabricated using a mature $0.5-$ micron gate length GaAs process. The process features full passivation for increased performance and reliability.

SSOP-28

Ordering Information

Part Number	Description
AM55-0003	SSOP 28-Lead Plastic Package
AM55-0003TR	Forward Tape \& Reel* *
AM55-0003RTR	Reverse Tape \& Reel*
AM55-0003SMB	Designer's Kit

* If specific reel size is required, consult factory for part number assignment.

Typical Electrical Specifications

Test Conditions: Frequency: $2.45 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD} 1,2,3}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{G} 1}$ adjusted for 20 mA quiescent bias on $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{G} 2}$ adjusted for $\mathbf{7 0} \mathrm{mA}$ quiescent bias on $\mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{G} 3}$ adjusted for 90 mA quiescent bias on $\mathrm{V}_{\mathrm{DD} 3}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Units	Min.	Typ.	Max.
Power Amplifier				
Linear Gain	dB	24	28	32
VSWR In/Out			1.75:1	
Output Power @ $\mathrm{P}_{1 \mathrm{~dB}}$	dBm	22.5	24.5	
Second Harmonic @ $\mathrm{P}_{1 \mathrm{~dB}}$	dBc		-20	0
Third Harmonic @ $\mathrm{P}_{1 \mathrm{~dB}}$	dBc		-30	-10
$\mathrm{I}_{\mathrm{DD}} @ \mathrm{P}_{1 \mathrm{~dB}}\left(\mathrm{~V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}+\mathrm{V}_{\mathrm{DD} 3}\right)$	mA		270	375
T/R and Diversity Switches				
Insertion Loss	dB		1.2	
Isolation	dB	10	12	
VSWR In/Out			1.5:1	

Pin Configuration

Pin No.	Pin Name	Description			
1	ANT CTRL	Antenna selection: Select ANT 1 $(0 \mathrm{~V})$ or ANT $2(+5 \mathrm{~V})$			
2	ANT COMMON	Common Port of Diversity Switch			
3	GND	DC and RF Ground			
4	ANT 1	Output \#1 of Diversity Switch			
5	GND	DC and RF Ground			
6	ANT 2	Output \#2 of Diversity Switch			
7	GND	DC and RF Ground			
8	RX OUT	Output of T/R Switch for receive mode	$	$	Vegative bias control for the second
:---					
9					
27					

Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
Max. Input Power ${ }^{2}$	+23 dBm
Operating Voltages ${ }^{2,3}$	$\mathrm{~V}_{\mathrm{DD}}=8 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{GG}}=-8 \mathrm{~V}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Exceeding these limits may cause permanent damage.
2. Ambient temperature $\left(T_{A}\right)=+25^{\circ} \mathrm{C}$
3. $\left|\mathrm{V}_{\mathrm{DD}}\right|+\left|\mathrm{V}_{\mathrm{GG}}\right|$ not to exceed 12 volts.

Truth Table

Control Line		Operating
ANT	T/R	
CTRL	CTRL	Receive
X	1	Transmit
X	0	ANT 1
0	X	ANT 2
1	X	

X - Don't Care
" 0 " = 0 V to $0.2 \mathrm{~V} @ 100 \mu \mathrm{~A}$
$" 1 "=V_{D D}$ to $V_{D D}-0.2 \mathrm{~V} @ 200 \mu \mathrm{~A}$

Functional Diagram and Pin Configuration

Power Amplifier Small Signal Performance ${ }^{1}$

Power Amplifier CW Performance at Various Supply Voltages ${ }^{1}$

POWER ADDED EFFICIENCY (\%) $@ 2.45 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{DD} 3}$

GAIN COMPRESSION @ $2.45 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{DD} 3}$

1. All data measured at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 70 mA and third stage current of 90 mA , respectively.

Power Amplifier Temperature Performance ${ }^{1}$

POWER OUTPUT @ 2.45 GHz ,

GAIN COMPRESSION @ 2.45 GHz ,

Power Amplifier Spurious Response at Various Supply Voltages ${ }^{1}$

THIRD ORDER INTERMODULATION RATIO@ 2.45 GHz, (TONE SPACING 600 kHz)

SECOND HARMONIC RATIO @ 2.45 GHz,

THIRD HARMONIC RATIO @ 2.45 GHz,

1. All data measured at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$ and $\mathrm{V}_{\mathrm{G} 3}$ adjusted for first stage quiescent current of 20 mA , second stage current of 70 mA and third stage current of 90 mA , respectively.

Transmit/Receive Switch Performance ${ }^{1}$

T/R INSERTION LOSS/ISOLATION (RECEIVE MODE)

Diversity Switch Performance ${ }^{1}$

1. All data measured with $\mathrm{V}_{\mathrm{DD}} \mathrm{TR}=\mathrm{V}_{\mathrm{DD}} \mathrm{ANT}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Measured at 2.45 GHz at RF IN. Output measured at ANT 1 or ANT 2, with RF OUT and ANT COMMON terminated in 50Ω.

Recommended PCB Configuration

Cross-Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between $50-\Omega$ lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008 in . (0.2 mm), yielding a $50-\Omega$ line width of $0.015 \mathrm{in} .(0.38 \mathrm{~mm})$. The recommended metalization thickness is 1 oz . copper.
Shaded traces are vias to DC routing layer and traces on DC routing layer.

Biasing Procedure

The AM55-0003 requires that V_{GG} bias be applied prior to any V_{DD} bias. Permanent damage may occur if this procedure is not followed. All FETs in the PA will draw excessive current and damage internal circuitry.

External Circuitry Parts List

Label	Value	Purpose
$\mathrm{C} 1-\mathrm{C} 6$	22 pF	Bypass (GHz)
$\mathrm{C} 23-\mathrm{C} 24$	22 pF	DC Block
$\mathrm{C} 7-\mathrm{C} 16$	1000 pF	Bypass (MHz)
$\mathrm{C} 17-\mathrm{C} 22$	$0.01 \mu \mathrm{~F}$	Bypass (kHz)
R1, R6	$1.5 \mathrm{k} \Omega$	
R3, R5	$5 \mathrm{k} \Omega$	FET Gate
R2	$12 \mathrm{k} \Omega$	
R4	$1 \mathrm{k} \Omega$	

All off-chip components are low-cost surface mount components obtainable from multiple sources. ($0.020 \mathrm{in} . \times 0.040 \mathrm{in}$. or $0.030 \mathrm{in} . \times 0.050 \mathrm{in}$.)

External Circuitry

Specifications Subject to Change Without Notice
V 2.0
M/A-COM Inc. ■ 1011 Pawtucket Boulevard, Lowell, MA 01853 USA ■ Telephone: 800-366-2266

Designer's Kit (AM55-0003SMB)

The AM55-0003SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0003 integrated power amplifier with T / R and diversity switches. The evaluation board consists of an AM55-0003, recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR- 4 PCB. Other items included in the Designer's Kit: a floppy disk (with typical performance data and a .DXF file of the recommended PCB layout) and any additional Application Notes. The AM55-0003SMB evaluation PCB and block diagram are illustrated below with all functional ports labeled.

P/A Switch Sample Board

Functional Block Diagram

DC Connector Pinout

PCB DC Connector	Function	Device Pin Number
1	GND	N / C
2	$\mathrm{ANT} \mathrm{CTRL}(0 \mathrm{~V} /+5 \mathrm{~V})$	1
3	$\mathrm{~N} / \mathrm{C}$	N / C
4	$\mathrm{~N} / \mathrm{C}$	N / C
5	$\mathrm{~N} / \mathrm{C}$	N / C
6	$\mathrm{~V}_{\mathrm{G} 2}$	9
7	VSW	N / C
8	$\mathrm{~V}_{\mathrm{DD} 1}(+5 \mathrm{~V})$	11
9	$\mathrm{~N} / \mathrm{C}$	N / C
10	$\mathrm{~V}_{\mathrm{G} 1}$	14

PCB DC Connector	Function	Device Pin Number
11	$\mathrm{~N} / \mathrm{C}$	N / C
12	$\mathrm{~V}_{\mathrm{G} 3}$	17
13	$\mathrm{~N} / \mathrm{C}$	N / C
14	$\mathrm{~V}_{\mathrm{DD} 2}(+5 \mathrm{~V})$	18
15	$\mathrm{~N} / \mathrm{C}$	N / C
16	$\mathrm{~V}_{\mathrm{DD} 3}(+5 \mathrm{~V})$	23
17	$\mathrm{~N} / \mathrm{C}$	N / C
18	$\mathrm{~T} / \mathrm{R} \mathrm{CTRL}(0 \mathrm{~V} /+5 \mathrm{~V})$	8
19	GND	N / C
20	$\mathrm{~V}_{\mathrm{DD}} \mathrm{TR}, \mathrm{V}_{\mathrm{DD}} \mathrm{ANT}(+5 \mathrm{~V})$	27,28

AM55-0003SMB Biasing Procedure

In order to prevent transients which may damage the MMIC, please adhere to the following procedure.

- Turn on all power supplies and set all voltages to 0 volts BEFORE connecting the power supplies to the DC connector.
- Apply a -5.0 volt supply to DC connector pin $10\left(\mathrm{~V}_{\mathrm{G} 1}\right)$.
- Apply a -5.0 volt supply to DC connector pin $6\left(\mathrm{~V}_{\mathrm{G} 2}\right)$.
- Apply a -5.0 volt supply to DC connector pin $12\left(\mathrm{~V}_{\mathrm{G} 3}\right)$.
- Apply a +5.0 volt supply to the DC connector pin $20\left(\mathrm{~V}_{\mathrm{DD}} \mathrm{TR}, \mathrm{V}_{\mathrm{DD}} \mathrm{ANT}\right)$.
- Apply a +5.0 volt supply to the DC connector pin $8\left(\mathrm{~V}_{\mathrm{DD1}}\right)$.
- Apply a +5.0 volt supply to the DC connector pin $14\left(\mathrm{~V}_{\mathrm{DD} 2}\right)$.
- Apply a +5.0 volt supply to the DC connector pin $16\left(\mathrm{~V}_{\mathrm{DD} 3}\right)$.
- Apply a GND or +5.0 volt supply to the DC connector pin 18 (T/R CTRL, see truth table for desired mode).
- Apply a GND or +5.0 volt supply to the DC connector pin 2 (ANT CTRL, see truth table for desired mode).
- Adjust $\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}, \mathrm{~V}_{\mathrm{G} 3}$ supplies to -5 volts.
- Adjust all V_{DD} supplies to +5 volts.
- Adjust $\mathrm{V}_{\mathrm{G} 1}$ supply for desired $\mathrm{V}_{\mathrm{DD} 1}$ quiescent current (typically $20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{G} 1}$ nominally -2.5 volts).
- Adjust $\mathrm{V}_{\mathrm{G} 2}$ supply for desired $\mathrm{V}_{\mathrm{DD} 2}$ quiescent current (typically $70 \mathrm{~mA}, \mathrm{~V}_{\mathrm{G} 2}$ nominally -2.5 volts).
- Adjust $\mathrm{V}_{\mathrm{G} 3}$ supply for desired $\mathrm{V}_{\mathrm{DD} 3}$ quiescent current (typically $90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{G} 3}$ nominally -2.5 volts).
- To power off, reverse above procedure.

1) Set all $V_{D D}$ lines to 0 volts.
2) Set $V_{G 1}, V_{G 2}$ and $V_{G 3}$ to 0 volts.
3) Disconnect bias lines from DC connector.
4) Turn off power supplies.

Evaluation PCB and RF Connector Losses

Port Reference	Loss (dB)
RF IN	0.25
RF OUT	0.25
RX OUT (LNA IN)	0.25
ANT COMMON (DIV SW)	0.25
ANT 1	0.25
ANT 2	0.25

The DC connector on the Designer's Kit PCB allows selection of all the device's operating modes. It is accomplished by one or more of the following methods.

1. A mating female multi-pin connector (Newark Electronics

Stock \#46F-4658, not included)
2. Wires soldered to the necessary pins (not included)
3. Clip leads (not included)
4. A combination of clip leads or wires and jumpers (jumpers included as required)

